3 a) A > 0 means that $x^{T}A x > 0$ for all nonzero vectors $x \in \mathbb{R}^{n}$. Let $k \in \{1, 2, ..., n\}$. Also let $y \in \mathbb{R}^{n}$ be an arbitrary nonzero vector. $o < \begin{pmatrix} y \\ o \end{pmatrix}^{T} A \begin{pmatrix} y \\ o \end{pmatrix} = y^{T}Ahy$. So Ak > 0.

During the lectures, we have seen that Ak > 0if and only if all eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$ of Akare positive. Thus, $det(Ak) = \lambda_1 \cdot \lambda_2 \cdots \lambda_k > 0$.

b) $A_i > 0$ implies that all eigenvalues of A_i are positive. Since the eigenvalues of $P := \begin{bmatrix} A_i & 0\\ 0 & a_i - b_i^T A_i^{-1} b_i \end{bmatrix}$

are the union of the eigenvalues of A_i and $a_i - b_i^T A^{-1} b_i > 0$, the eigenvalues of P are

positive. Thus, P is positive definite.
Now, note that

$$M = \begin{bmatrix} I & A_i^T b_i \\ 0 & I \end{bmatrix}$$
is nonsingular (it has determinant 1).
Therefore, if $x \in \mathbb{R}^n$ is nonzero, also $Mx \neq 0$.
In addition,

$$M^T = \begin{pmatrix} I & 0 \\ b_i^T A_i^T & I \end{pmatrix}, \text{ since } A_i \text{ is symmetric.}$$
Hence, for any nonzero $x \in \mathbb{R}^n$, $x^T A_{i+1} x =$
 $x^T M^T P M x > 0$, by positive definite ness of P.
 \neq^0
As such, $A_{i+1} > 0$.

C) Assume that det
$$(A_k) > 0$$
 for $k = 1, 2, ..., n$.
We will prove that $A_k > 0$ for $k = 1, 2, ..., n$, thus
 $A = A_n > 0$.
(1) $A_1 = det(A_1) > 0$ V

(2) Assume that
$$A_i > 0$$
 for some $i \in \{2, 2, ..., n-1\}$.
To prove: $A_{i+1} > 0$.
 $A_{i+1} = M^T \begin{bmatrix} A_i & 0\\ 0 & a_i - b_i^T A_i^{-1} b_i \end{bmatrix} M$.
 $det(A_{i+1}) = det(M^T) \cdot det(P) \cdot det(M)$.
 $= 1$
while $det(P) = det(A_i) \cdot det(a_i - b_i^T A_i^{-1} b_i)$
so $olet(A_{i+1}) = det(A_i) \cdot det(a_i - b_i^T A_i^{-1} b_i)$.
 $= 0$ $det(a_i - b_i^T A_i^{-1} b_i) = a_i - b_i^T A_i^{-1} b_i > 0$
 $= 0$ $det(a_i - b_i^T A_i^{-1} b_i) = a_i - b_i^T A_i^{-1} b_i > 0$
 $= 0$ $A_{i+1} > 0$ by (b).

Therefore, by induction, $A_k > 0$ for k = 1, 2, ..., n. Hence, $A = A_n > 0$.

d)
$$1 > 0$$
, $det \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix} = 2.70$
 $det \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix} = 1 > 0.$
So A is positive definite by (C).

$$\begin{array}{l} (4 \quad a) \\ A = \begin{bmatrix} a & -b \\ b & a \\ c & o \end{bmatrix} \\ A^{T}A = \begin{bmatrix} a^{t}+b^{t}+c^{c} & 0 \\ 0 & a^{t}+b^{t} \end{bmatrix}$$

so eigenvalues of A^TA are $a^{2}+b^{2}+c^{2} > a^{2}+b^{2}$. => $G_{1} = \sqrt{a^{2}+b^{2}+c^{2}}$ and $G_{2} = \sqrt{a^{2}+b^{2}}$. note that $G_{1} > 0$ and $G_{2} > 0$, since $a, b, c \neq 0$. A corresponding orthogonal matrix V is:

$$V = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$v_{1} & v_{2}$$

$$u_{1} = \frac{1}{6_{1}} A v_{1} = \frac{1}{\sqrt{a^{2} + b^{2} + c^{2}}} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

$$u_{2} = \frac{1}{6_{2}} A v_{2} = \frac{1}{\sqrt{a^{2} + b^{2}}} \begin{pmatrix} -b \\ a \\ o \end{pmatrix}$$

Extend u_{1}, u_{2} to an orthonormal basis of \mathbb{R}^{3} : For example, choose $u_{3} = \underbrace{\int_{a^{2}+b^{2}+\frac{1}{c^{2}}(a^{1}+b^{1})^{2}}^{l} \begin{pmatrix} a \\ b \\ \frac{1}{c}(-a^{2}-b^{2}) \end{pmatrix}$

Define
$$\mathcal{U} = \begin{pmatrix} \frac{a}{\sqrt{a^2 + b^2 + c^2}} & \frac{-b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2 + c^2}} \\ \frac{b}{\sqrt{a^2 + b^2 + c^2}} & \frac{a}{\sqrt{a^2 + b^2}} & \frac{b}{\sqrt{a^2 + b^2 + c^2} (a^2 + b^2)^2} \\ \frac{C}{\sqrt{a^2 + b^2 + c^2}} & 0 & \frac{-a^2 - b^2}{C \sqrt{a^2 + b^2 + c^2} (a^2 + b^2)^2} \\ \sqrt{a^2 + b^2 + c^2} & 0 & \frac{-a^2 - b^2}{C \sqrt{a^2 + b^2 + c^2} (a^2 + b^2)^2} \end{pmatrix}$$

By construction, U is an orthogonal matrix. Define $Z = \begin{pmatrix} \sqrt{a^2+b^2+c^2} & 0 \\ 0 & \sqrt{a^2+b^2} \\ 0 & 0 \end{pmatrix}$

Then
$$A = UZV^{T}$$
.
b) A best rank-1 approximation is
 $X = U \begin{pmatrix} \sqrt{a^2 + b + c^2} & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} V^{T}$
 $= \begin{pmatrix} a & 0 \\ b & 0 \\ C & 0 \end{pmatrix}$

The distance of A to the set of 3×2 matrices of rank ≤ 1 is:

 $d(A, M_1) = G_2 = \sqrt{a^2 + b^2}$