3 a) $A>0$ means that $x^{\top} A x>0$ for all nonzero vectors $x \in \mathbb{R}^{n}$. Let $k \in\{1,2, \ldots, n\}$.
Also let $y \in \mathbb{R}^{n}$ be an arbitrary nonzero vector.

$$
0<\binom{y}{0}^{\top} A\binom{y}{0}=y^{\top} A_{h} y .
$$

So $A_{k}>0$.
During the lectures, we have seen that $A_{k}>0$ if and only if all eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ of A_{k} are positive.
Thus, $\operatorname{det}\left(\lambda_{k}\right)=\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{k}>0$.
b) $A_{i}>0$ implies that all eigenvalues of A_{i} are positive.
Since the eigenvalues of

$$
P:=\left[\begin{array}{cc}
A_{i} & 0 \\
0 & a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}
\end{array}\right]
$$

are the union of the eigenvalues of A_{i} and $a_{i}-b_{i}^{\top} A^{-1} b_{i}>0$, the eigenvalues of P are
positive. Thus, P is positive definite.
Now, note that

$$
M=\left[\begin{array}{cc}
I & A_{i}^{-1} b_{i} \\
0 & 1
\end{array}\right]
$$

is nonsingular (it has determinant 1).
Therefore, if $x \in \mathbb{R}^{n}$ is nonzero, also $M x \neq 0$.
In addition,
$M^{\top}=\left(\begin{array}{cc}I & 0 \\ b_{i}^{\top} A_{i}^{-1} & 1\end{array}\right)$, since A_{i} is symmetric.
Hence, for any nonzero $x \in \mathbb{R}^{n}, x^{\top} A_{i+1} x=$ $x^{\top} M^{\top} P \underset{\neq 0}{M x}>0$, by positive definite ness of P.
As such, $A_{i+1}>0$.
C) Assume that $\operatorname{det}\left(A_{k}\right)>0$ for $k=1,2, \ldots, n$. We will prove that $A_{k}>0$ for $k=1,2, \ldots, n$, thus $A=A_{n}>0$.
(1) $\quad A_{1}=\operatorname{det}\left(A_{1}\right)>0$
(2) Assume that $A_{i}>0$ for some $i \in\{1,2, \ldots, n-1\}$. To prove: $A_{i+1}>0$.

$$
\begin{aligned}
& A_{i+1}=M^{\top}\left[\begin{array}{cc}
A_{i} & 0 \\
0 & a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}
\end{array}\right] M \text {. } \\
& \operatorname{det}\left(A_{i r 1}\right)=\underbrace{\operatorname{det}\left(M^{\top}\right)}_{=1} \cdot \operatorname{det}(P) \cdot \underbrace{\operatorname{det}(M)}_{=1} \\
& \text { while } \operatorname{det}(P)=\operatorname{det}\left(A_{i}\right) \cdot \operatorname{det}\left(a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}\right) \\
& \text { so } \underbrace{\operatorname{det}\left(A_{i+1}\right)}_{>0}=\underbrace{\operatorname{det}\left(A_{i}\right)}_{>0} \cdot \operatorname{det}\left(a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}\right) \text {. } \\
& \Rightarrow \operatorname{det}\left(a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}\right)=a_{i}-b_{i}^{\top} A_{i}^{-1} b_{i}>0 \\
& \Rightarrow A_{i+1}>0 \text { by (b). }
\end{aligned}
$$

Therefore, by induction, $A_{n}>0$ for $k=1,2, \ldots, n$. Hence, $A=A_{n}>0$.
d) $1>0, \quad \operatorname{det}\left(\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right)=2>0$ $\operatorname{det}\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 1\end{array}\right)=1>0$.
So A is positive definite by (c).
$4 \quad$ a)

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
a & -b \\
b & a \\
c & 0
\end{array}\right] \\
A^{\top} A & =\left[\begin{array}{cc}
a^{2}+b^{2}+c^{2} & 0 \\
0 & a^{2}+b^{2}
\end{array}\right]
\end{aligned}
$$

so eigenvalues of $A^{\top} A$ are $a^{2}+b^{2}+c^{2}>a^{2}+b^{2}$.

$$
\Rightarrow \sigma_{1}=\sqrt{a^{2}+b^{2}+c^{2}} \text { and } \sigma_{2}=\sqrt{a^{2}+b^{2}}
$$

note that $\sigma_{1}>0$ and $\sigma_{2}>0$, since $a, b, c \neq 0$.
A corresponding orthogonal matrix V is:

$$
\begin{aligned}
& V=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) . \\
& v_{1} v_{2} \\
& u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \\
& u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{\sqrt{a^{2}+b^{2}}}\left(\begin{array}{c}
-b \\
a \\
0
\end{array}\right)
\end{aligned}
$$

Extend u_{1}, u_{2} to an orthonormal basis of \mathbb{R}^{3} :
For example, choose $u_{3}=\frac{1}{\sqrt{a^{2}+b^{2}+\frac{1}{c^{2}}\left(a^{2}+b^{2}\right)^{2}}}\left(\begin{array}{l}a \\ b \\ \frac{1}{c}\left(-a^{2}-b^{2}\right)\end{array}\right)$

Define $U=\left(\begin{array}{ccc}\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} & \frac{-b}{\sqrt{a^{2}+b^{2}}} & \frac{a}{\sqrt{a^{2}+b^{2}+\frac{1}{c}\left(a^{2}+b^{2}\right)^{2}}} \\ \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} & \frac{a}{\sqrt{a^{2}+b^{2}}} & \frac{b}{\sqrt{a^{2}+b^{2}+\frac{1}{c^{2}\left(a^{2}+b^{2}\right)^{2}}}} \\ \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} & 0 & \frac{-a^{2}-b^{2}}{c \sqrt{a^{2}+b^{2}+c^{2}\left(a^{2}+b^{2}\right)^{2}}}\end{array}\right)$
By construction, u is an orthogonal matrix.
Define $\Sigma=\left(\begin{array}{cc}\sqrt{a^{2}+b^{2}+c^{2}} & 0 \\ 0 & \sqrt{a^{2}+b^{2}} \\ 0 & 0\end{array}\right)$

Then $A=U \Sigma V^{\top}$.
b) A best rank-1 approximation is

$$
\begin{aligned}
X & =U\left(\begin{array}{cc}
\sqrt{a^{2}+b^{2}+c^{2}} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) V^{\top} \\
& =\left(\begin{array}{ll}
a & 0 \\
b & 0 \\
c & 0
\end{array}\right)
\end{aligned}
$$

The distance of A to the set of 3×2 matrices of rank ≤ 1 is:

$$
d\left(A, M_{1}\right)=\sigma_{2}=\sqrt{a^{2}+b^{2}}
$$

